
1

Predictable GPUWavefront Splitting for Safety-Critical
Systems
ARTEM KLASHTORNY, University of Waterloo, Canada

ZHUANHAO WU, University of Waterloo, Canada

ANIRUDH MOHAN KAUSHIK, Intel of Canada, Canada
HIREN PATEL, University of Waterloo, Canada

We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS

improves the performance of GPU applications by reducing the impact of branch divergence while ensuring

that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique

to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require

strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural

enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a

wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with

a lower WCET than prior works in wavefront splitting.

CCS Concepts: • Computer systems organization→ Real-time system architecture.

Additional Key Words and Phrases: GPU, safety-critical systems

ACM Reference Format:
Artem Klashtorny, Zhuanhao Wu, Anirudh Mohan Kaushik, and Hiren Patel. 2023. Predictable GPUWavefront

Splitting for Safety-Critical Systems. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2023), 25 pages.

https://doi.org/10.1145/3609102

1 INTRODUCTION
Graphics processing units (GPUs) are becoming increasingly common computing platforms used

in safety-critical systems. GPUs offer high performance for workloads such as vision processing

and machine-learning algorithms. Self-driving automotive and advanced assisted driving systems

are examples that employ GPUs in their deployments to process these algorithms. Existing compute

platforms such as Tesla’s Autopilot system-on-chip (SoC) [5] and NVIDIA’s Jetson SoC [4] exploit

the GPU for assisted driving features.

Employing GPUs in safety-critical systems continues to be a difficult challenge. This is because

safety-critical systems require certain tasks to be guaranteed to meet certain temporal require-

ments [21], and providing these guarantees is extremely difficult given modern GPU microar-

chitectures. The temporal guarantees are typically computed via analysis tools that produce the

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2023

Authors’ addresses: Artem Klashtorny, aklashto@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo,

Ontario, Canada, N2L 3G1; Zhuanhao Wu, z284wu@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo,

Ontario, Canada, N2L 3G1; Anirudh Mohan Kaushik, anirudh.kaushik@intel.com, Intel of Canada, Toronto, Ontario, Canada;

Hiren Patel, hdpatel@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada, N2L 3G1.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/1-ART1 $15.00

https://doi.org/10.1145/3609102

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

HTTPS://ORCID.ORG/0009-0001-8458-8512
HTTPS://ORCID.ORG/0000-0003-3272-062X
HTTPS://ORCID.ORG/0000-0002-8347-0109
HTTPS://ORCID.ORG/0000-0003-2750-4471
https://doi.org/10.1145/3609102
https://orcid.org/0009-0001-8458-8512
https://orcid.org/0000-0003-3272-062X
https://orcid.org/0000-0002-8347-0109
https://orcid.org/0000-0003-2750-4471
https://doi.org/10.1145/3609102

1:2 Klashtorny et al.

worst-case execution time (WCET) the kernel takes to execute. Producing such analyses requires a

detailed understanding of the GPU microarchitecture and its delays. Since most commercial off-the-

shelf (COTS) GPUs are poorly documented or closed-source, developing such WCET analysis tools

is difficult [16, 21]. To address this issue, there have been efforts to reverse-engineer COTS GPUs

and to propose techniques that make them more suitable for safety-critical systems [4, 6, 12, 16].

Others have proposed new GPU architectures that are specifically designed to support static WCET

analysis [17, 20].

Despite the progress of GPU research for safety-critical applications, these works do not address

the impact of branch divergence on the WCET. Normally, a GPU executes multiple threads, known

as work-items, grouped into units called wavefronts. Work-items in a wavefront execute the same

instruction simultaneously in lockstep on vectorized data. If the GPU program has conditional logic,

then work-items must execute distinct sets of instructions at runtime [1]. To avoid breaking up the

lockstep execution of work-items, GPUs serialize the execution of the branching paths, reducing

the performance of the GPU. In the worst-case, all branches that are data-dependent can diverge at

runtime. Thus, branch divergence also present a significant challenge for safety-critical systems.

Prior works propose techniques that address branch divergence, including dynamic wavefront

splitting [9, 10, 15, 18], in which the GPU breaks up the lockstep wavefront execution to avoid

serialization. However, these techniques target improving average-case performance rather than

reducing the WCET.

In this work, we present a GPU architecture and a compiler pass that together allow for predictable

wavefront splitting (PWS). There are three key challenges this work addresses. The first challenge

is identifying when to perform wavefront split operations to compute a low WCET. The second

challenge is scheduling the execution of the split wavefronts (SWFs). The third challenge involves

providing provable lower WCETs compared to existing GPU architectures and prior works through

compiler adjustments and WCET analysis. Our novel contributions are as follows.

(1) We introduce two new GPU ISA instructions, split and merge, which allow the GPU program-

mer to indicate when the GPU will split wavefronts.

(2) We propose a GPU microarchitecture that adds execution hardware that is explicitly used for

split wavefronts. This guarantees that split wavefronts can execute in parallel.

(3) We propose a compiler pass that prunes control-flow graphs to eliminate branch serialization

and reduce the WCET of a wavefront.

(4) We extend an existing WCET analysis to support PWS, and our results show that the WCET

of a GPU kernel can be lowered.

The remainder of this paper is organized as follows. Section 2 introduces the relevant background

on GPU hardware and the corresponding programming model. Section 3 identifies the problems

with existing implementations of wavefront splitting in safety-critical systems and motivates the

need for the main contributions of PWS. Section 4 illustrates the architectural details that enable

contributions (1) to (3). Section 5 presents a WCET analysis of a GPU kernel executing using PWS

and compares it to prior techniques. Section 6 outlines the related works in wavefront splitting and

the use of GPUs in safety-critical systems. Section 7 demonstrates the benefits of PWS using data

collected from a set of benchmarks executed using a GPU simulator.

2 BACKGROUND
The GPU has a programming model component and a hardware component, both of which are

fundamental to our work. We describe both in this section.

Programming model. A GPU executes a program called a kernel. The kernel implements multi-

threaded functions in which each thread is called a work-item (WI). Work-items execute each kernel

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:3

instruction in parallel on distinct data values. This is known as single instruction multiple data

(SIMD) execution [1]. Figure 1a demonstrates SIMD execution using a simple kernel that performs

addition. We present the kernel as both C++ and assembly code in Figure 1a, where idx is the

work-item index. For simplicity, we assume data from variable a is stored in register s0 and the data

A[idx] from array A is stored in register v0. Notice that all work-items perform the same addition

operation on the elements of the vector register v0 simultaneously.

int G = 2; int W = 4;1

launch(kernel, G, W);2

3

void kernel() {4

if (a > 0)5

A[idx] += 1;6

}7

BB0:1

s_cmp_le s0, 02

s_cbranch_scc1 BB23

BB1:4

v_add v0, v0, 15

BB2:6

s_endpgm7

30182955v0

31193056v0

Before line 5

A er line 5

3210idx

+1+1+1+1 v_add v0, v0, 1

AssemblyC++

(a) A GPU kernel and associated execution of a vector
instruction.

GPU Processor

W
o

rk
g

ro
u

p

D
is

p
a

tc
h

e
r

CUs
WF Pipeline

Memory Interface

SIMD

Units

SIMD Unit
VALU

VQ
WF Contexts

SRFIBUF VRF

SALU

SQ

(b) Our GPU processor model.

Fig. 1. A very simple example GPU kernel execution and the GPU hardware model.

When deploying a kernel for execution on the GPU, the programmer specifies 𝑁𝑊𝐼𝑊𝐺 , the

number of work-items grouped into a unit called a workgroup (WG), as well as the total number of

workgroups,𝐺 . Figure 1a uses the variables G and W to represent these parameters. All WIs within a

WG share execution resources such as synchronization barriers and scratchpad memory, which is

called the local data share (LDS). The GPU may not have enough hardware resources to execute all

work-items specified by the programmer in parallel. Thus, it dispatches the workgroups by dividing

them into units of 𝑁𝑊𝐼𝑊 𝐹 work-items called a wavefront (WF). The GPU performs scheduling and

SIMD execution using these wavefronts.

Hardware model. We base our GPU’s hardware model on AMD’s GPU implementation. We show

the most relevant parts of the hardware in Figure 1b [2, 3].

Compute units. A compute unit (CU) is a GPU hardware unit that has 𝑁𝑆𝐼𝑀𝐷 SIMD vector execution

units, a wavefront pipeline, and a memory interface. We assume the GPU contains 𝑁𝐶𝑈 CUs.

Workgroup dispatcher. When the GPU receives a request to execute a kernel, the workgroup

dispatcher distributes the workgroups to the CUs. Then, the dispatcher divides the work-items

in the workgroup into wavefronts on the selected CU. Note that multiple wavefronts may be

required to completely execute all work-items in a workgroup. The dispatcher continues dispatching

workgroups to CUs until there are no more CUs remaining with enough resources to execute

additional wavefronts. Wavefronts from the same workgroup are guaranteed to be dispatched to

the same CU. These wavefronts can synchronize with each other and share data.

Wavefront context. The CU maintains a state for each of its wavefronts, which we call a wavefront

context (WF context). The WF context consists of a vector register file (VRF), a scalar register

file (SRF), and an instruction buffer (IBUF). Each register in the VRF is a vector in which each

element, or lane, corresponds to a single work-item index, similar to the example vector register in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:4 Klashtorny et al.

Figure 1a. Each wavefront also has a special register called the execute mask. The mask dictates the

work-items in a wavefront that execute a given instruction. Each bit of the register corresponds

to a work-item index. If the bit is 1, the work-item is active and executes the given instruction;

if it is 0, the work-item is dormant and executes a NOP. The wavefront uses the VRF to manage

data and status individually for each work-item index in conjunction with the VALU in the WF

unit. Similarly, the wavefront uses the SRF for single operations for the whole wavefront. The

scalar instructions in Figure 1a show the use of scalar registers for constants and the results of

comparisons.

Wavefront scheduling. The CU wavefront pipeline is responsible for fetching and decoding instruc-

tions for WF contexts and for scheduling WF execution on the SIMD units. The wavefront pipeline

will fetch and decode instructions within each WF context’s instruction buffers. If the instruction

at the front of the buffer is free of dependencies, the CU schedules the WF for execution. It adds

any vector instructions to a queue for the VALU (VQ) and scalar instructions to a queue for the

SALU (SQ). If the SIMD executes a memory instruction, it will compute the address and then the

CU adds the memory request to a queue for the memory interface.

SIMD units. A SIMD unit enables lockstep SIMD execution of a wavefront. A SIMD unit consists of

a vector ALU (VALU) and a scalar ALU (SALU). The VALU has 𝑁𝑊𝐼𝑊 𝐹 parallel ALUs that allow

for 𝑁𝑊𝐼𝑊 𝐹 parallel integer or floating point operations to occur. It enables SIMD operation of a

wavefront on vectorized data by executing instructions in parallel across all work-items, as shown

in Figure 1a with the v_add instruction. Conversely, the SALU performs operations that are not

vector instructions, such as unconditional branches and synchronization barriers. In the simple

kernel from Figure 1a, the assembly instructions with the prefix s_ correspond to instructions that

run on the SALU. Each SIMD contains a set of 𝑁𝑊𝐹𝐶 WF contexts; WF contexts execute exclusively

on their own SIMD.

3 MOTIVATION
We motivate the need for a predictable wavefront splitting (PWS) GPU by starting with explaining

the impact of branch divergence in GPUs on predictability, and briefly reviewing the pertinent

state-of-the-art approaches and the issues that they pose for predictability. Then, we describe our

insights in designing PWS.

Branch divergence. Branch divergence occurs when conditional statements in the kernel cause

the control flow of the work-items within a wavefront to execute distinct paths. This results in

significant performance degradation [11]. Branch divergence also lengthens the WCET of a kernel

because it serializes the execution of the divergent paths. Given that real-world workloads are

subject to branch divergent instructions, there have been several solutions that address the issue of

branch divergence [11, 15]. All prior efforts primarily focus on improving average-case performance.

In this work, we believe we are the first to investigate the predictability of such solutions.

Consider the example kernel in Figure 2b that has four work-items with indices zero to three.

The program accesses this index using idx in the conditions of the if statements. The kernel’s

control-flow graph (CFG) in Figure 2a has vertices that are basic blocks (denoted 𝐵𝐵𝑥). The edges

in the CFG represent the possible work-item execution orderings between the basic blocks. We

show the value of array A in Figure 2b.

Figure 2c shows the execution of a wavefront. All four WIs in the wavefront execute 𝐵𝐵1 at time

0. Note that solid arrows indicate active WIs and empty arrows indicate inactive or stalled WIs.

The if condition reads contents of array A by using each WI’s respective index to determine the

next basic block to execute. WIs whose A[idx] value is greater than 25 execute 𝐵𝐵2 to 𝐵𝐵5 (yellow

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:5

(a) Kernel CFG and associated WCETs
for each BB.

1 // A = {17, 29, 52, 80};

2 // BB1

3 if (A[idx] > 25) {

4 // BB2

5 if (A[idx] > 75) {

6 // BB3

7 } else {

8 // BB4

9 }

10 // BB5

11 } else {

12 // BB6

13 }

14 // BB7

15 if (A[idx] > 50) {

16 // BB8

17 } else {

18 // BB9

19 }

20 // BB10

(b) C++ code representing the kernel.

(c) Kernel execution without
splitting.

(d) Kernel execution with
splitting on distinct SIMDs.

(e) Kernel execution with DWS on a
shared SIMD.

Ac ve work-item Inac ve work-item

Fig. 2. Control-flow graph depicting branch divergence with nesting and sequences of branches with corre-
sponding C++ code, with associated execution flow of the kernel. Execution of WFs and SWFs is temporally
depicted on the timeline with the hardware allocation to SIMD units below.

in Figure 2a) and all other work-items execute 𝐵𝐵6 (green in Figure 2a). Hence, work-items with

indices 1, 2, and 3 execute 𝐵𝐵2 to 𝐵𝐵5, and 0 executes 𝐵𝐵6. The SIMD execution handles each

instance of branch divergence by executing both paths serially. Hence, at time 1, WIs 1, 2, and

3 execute (solid arrow), while WI 0 is stalled. The WIs executing 𝐵𝐵2 encounter another branch

where WIs with index 3 execute 𝐵𝐵3 (in navy blue) and WIs with indices 1 and 2 execute 𝐵𝐵4 (in

orange). Then, WIs 1 to 3 all become active again and execute 𝐵𝐵5. Upon completion of 𝐵𝐵5, WI 0

executes 𝐵𝐵6, while all other WIs are stalled. Next, all WIs execute 𝐵𝐵7. In a similar behaviour to

the earlier branches, the WIs take different paths through 𝐵𝐵8 and 𝐵𝐵9 based on whether the data

value is greater than 50. Finally, all WIs execute 𝐵𝐵10. Note that the actual path executed depends

on the work-item index and the input data. Notice that the entire execution uses only one SIMD,

and divergent paths have to serially use SIMD0.

Dynamic wavefront splitting. One approach to address branch divergence proposed by recent

works is by using dynamic wavefront splitting (DWS) [9, 10, 15, 18]. DWS divides work-items that

take divergent paths into separate schedulable wavefronts. We call these split-wavefronts (SWFs).

The DWS implementations in all prior works identify, create, and execute SWFs dynamically at

run-time. For a diverging branch, the wavefront splits into two where the work-items executing

one path form one SWF, and those executing the other path form another SWF. For the example

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:6 Klashtorny et al.

execution in Figure 2d, at time 1, the if statement diverges resulting in two SWFs: one executes

𝐵𝐵2 on work-items with indices 1 through 3 and the second SWF executes 𝐵𝐵6 on work-item 0.

These SWFs can execute in parallel given the availability of SIMD units. 𝐵𝐵2 executes on SIMD0

and 𝐵𝐵6 on SIMD1. As the execution continues and completes, we note that it takes 13 units of

time to complete the wavefront’s execution using DWS (as shown in Figure 2d), which is less than

the 20 cycles required to complete the execution without splitting (shown in Figure 2c).

Issues in adopting DWS for safety-critical systems. Prior works that deployed DWS only

concentrated on improving average-case performance [9, 10, 15, 18]. To the best of our knowledge,

there are no efforts in evaluating DWS for safety-critical systems. Safety-critical systems have the

additional requirement that the deployed applications meet safety certification standards such as

those in [8, 14]. A central requirement in these standards is to produce worst-case execution time

(WCET) estimates for critical tasks. For our illustrative example, we assume that the WCET of each

basic block is known as shown in the table in Figure 2a. Hence, the WCET of the kernel on the

original GPU (without DWS) in Figure 2c is 20; simply the sum of all basic block WCETs. This is

because all basic blocks execute and no two blocks can execute in parallel.

With DWS, it would appear that the latency for kernel in Figure 2 is 13, as seen in Figure 2d.

However, the WCET is larger, and ends up being 20, as shown in Figure 2e. We identify two main

issues that cause the WCET of DWS to be the same as the original architecture without splitting.

Issue 1: Run-time decision on WF splitting of branches. The DWS hardware determines whether a

branch diverges at run-time. Hence, it is possible that all branches, no branches, or some number

in between, in the kernel diverge. The WCET analysis needs to assume that all branches diverge,

and that each wavefront executing the branch creates an SWF. This is because whether a branch

diverges is a run-time property and multiple executions of the kernel may trigger different branches

to diverge. Since DWS creates a separate schedulable SWF on a divergent branch, which we call

a split point, the newly created SWF may suffer interference from all other WFs in the WG. This

is the key reason the WCET increases. For the example in Figure 2a, suppose that the GPU must

select only one split point on either 𝐵𝐵1 or 𝐵𝐵2. If it splits the wavefront at 𝐵𝐵1, then 𝐵𝐵3 and 𝐵𝐵4

must be serialized. If it splits at 𝐵𝐵2, then 𝐵𝐵6 must be serialized with 𝐵𝐵2 to 𝐵𝐵5. Since 𝐵𝐵6 has a

lower WCET than 𝐵𝐵3 or 𝐵𝐵4, there is a significant timing penalty when choosing to split at 𝐵𝐵1.

With DWS, the GPU selects at run-time where to split; hence, the WCET of the WF must account

for the split point that incurs the largest execution latency.

Solution 1: Statically specify branches to create SWFs. We introduce instructions in the instruction-set

architecture (ISA) that allows a GPU programmer to specify the branches to trigger the creation of

SWFs. This enables WCET analyses to statically assess occupancy of SWFs. Note that selecting the

branches that result in the lowest WCET is in itself a problem that we do not explore in this paper,

and reserve it for future work. By allowing the GPU programmer to statically mark branches for

splitting, we can guarantee the selection of split points. When the GPU splits a wavefront, each

SWF takes one of two paths of a branch. Since we can determine statically which branch nodes in

the CFG will be split points, we can predict branch paths each SWF will not take. To aid the WCET

analysis, we present a compiler pass that prunes the kernel CFG to correspond to the worst-case

path an SWF can execute. This reduces the WCET of a WI.

Issue 2: SIMD units are shared between SWFs and WFs. Prior works use the same SIMD units to

execute SWFs; making no distinction between an SWF and WF executing on a SIMD unit. While

this allows sharing of SIMD units across SWFs and WFs, it results in a large WCET. Consider

encountering a divergent branch with no available SIMD units to execute the corresponding SWF.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:7

This results in serially executing the SWF, as in Figure 2c. One prior work executes SWFs in parallel

on distinct execution units [9]; however, this work is limited to a maximum of two SWFs in parallel

and limits the capacity for wavefronts. Consequently, SWFs must compete for the sameWF contexts

as wavefronts that have not split. A WCET analysis of this execution must consider the worst-case,

which is the serial execution of all SWFs and a reduced simultaneous capacity for wavefronts on

SIMD units.

Solution 2: Dedicated SIMD units. We propose providing hardware compute units dedicated to the

execution of SWFs called split SIMD units (SpSIMD units or SpSIMDs). These SpSIMDs are available

in addition to the existing SIMD units of the GPU, but they are reserved only for SWF execution. At

a divergent branch, one SWF executes on the SpSIMD while the other path executes on the original

hardware unit. These solutions to the challenges comprise our architectural implementation, which

we call predictable wavefront splitting (PWS).

4 PWS DESIGN
PWS proposes architectural modifications to the GPU hardware and the ISA. PWS also uses a

compiler pass to transform the kernel CFG into a version for PWS. This CFG allows us to reduce

the WCET for each SWF executing the kernel. We discuss these architectural modifications next.

4.1 Architectural modifications for PWS
We add two key architectural features to enable PWS: (1) an instruction that allows GPU program-

mers to specify split points in kernels, and (2) a set of dedicated SpSIMD units for SWFs to execute

in parallel.

Statically specifying split points for SWFs. We extend the GPU ISA with two instructions that

allow the programmer to statically select split and merge points within the kernel, which we call

split and merge. The split instruction informs the GPU to split a wavefront into two SWFs. The

merge instruction indicates that two SWFs should merge back into a single wavefront. We present

the encoding for these instructions in Figure 3a.

1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 SSRC1 SSRC0

31 029 22 15 7

1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 DC

sp
li
t

me
rg
e

31 029 22 15

opcode operand operand

(a) Instruction encodings (b) Example instruction usage

Fig. 3. split and merge instruction encodings

The split and merge instructions are 32 bits each. For split, bits 0 to 7 and 8 to 15 represent two

scalar register source operands. Bits 16 to 31 represent the instruction opcode. The scalar registers

are each 32 bits wide; we use each bit to indicate whether a work-item is active or inactive in the

resulting SWFs. Having two source operands allows PWS to support wavefronts with 𝑁𝑊𝐼𝑊 𝐹 ≤ 64,

an upper bound which supports all recent AMD GPU architectures [2, 3]. The merge instruction

also consists of 16 opcode bits, while the remaining bits are unused.

The GPU programmer can insert split between any two consecutive instructions in the program.

During execution, a split before a branch instruction causes PWS to split the WF into two SWFs. A

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:8 Klashtorny et al.

split in other locations is removed by our compiler. Figure 3b shows an example using split. In the

example, we assume that each wavefront has four work-items and scalar registers are two bits each.

We show how the GPU combines the two 2-bit scalar registers to track the active work-items in a

wavefront of 4 work-items. When the wavefront executes split, it uses s0 and s1 to indicate the

work-items in the resulting SWFs. Notice that s0 corresponds to whether the first two work-items

are in SWF1 while s1 corresponds to the last two work-items. The wavefront sets the work-items

in SWF2 based on the negation of these bits. When the two SWFs finish executing each divergent

branch, they execute a basic block known as the post-dominator (the join point for the branch).

After the post-dominator, PWS merges the two SWFs via the merge instruction so that downstream

branches could split again and reuse the SWF resources. Our compiler pass automatically inserts

these merge instructions. In Figure 3b, the merge instruction regroups SWF1 and SWF2 to WF1, in

which all work-items are active.

Dedicated hardware for SWFs. In PWS, we add GPU hardware execution resources that are

exclusively provisioned for SWFs as shown in Figure 4. We add SpSIMD units, which are SIMD

units with added registers to the WF contexts to accommodate SWFs. We call WF contexts on

SpSIMD units SWF contexts. This added hardware allows PWS to guarantee parallel execution of

SWFs.

GPU Processor

W
o

rk
g

ro
u

p

D
is

p
a

tc
h

e
r

CUsWF

Pipeline

Memory

Interface

SIMD

Units

SpSIMD

Units

(a) GPU processor model

SIMD Unit

VALU
VQ

WF Contexts

SRF

IBUF

SALU
SQSpM

VRF

Child ID

EM

SpSIMD ID

(b) SIMD unit model

SpSIMD Unit

VALU
VQ

SWF Contexts

IBUF

SALU
SQParent

SRFSpM

Child ID

EM

SpSIMD ID

(c) SpSIMD unit model

Fig. 4. Our implementation of PWS hardware

SpSIMD units. For each SIMD unit in the baseline architecture, PWS adds S SpSIMDs and a

uniquely-valued read-only identifier register (SpSIMDID). We permit each wavefront to split up to

a maximum of S times. GPU microarchitects can select S as a design-time parameter based on

their resource constraints.

SWF contexts. Each SpSIMD unit contains an SWF context, which is a modified WF context that

enables the GPU to maintain state for SWFs. An SWF context contains a SRF along with new

registers called the split mask (SpM) and parent, as well as a stack of children. We also add the SpM

and child stack to the WF context; this allows WF contexts to accommodate SWFs. Finally, we

add uniquely-valued read-only identifier registers (ID) that number each WF and SWF context to

preserve relationships between SWFs.

Recall that each wavefront has an execute mask (EM) that specifies the currently active work-

items in the wavefront. The execute mask changes each time the wavefront executes a vector

comparison for a branch instruction. Unlike the execute mask, the split mask stores the work-items

that are included in the SWF and does not change until a subsequent split or merge instruction.

When executing, the wavefront can determine whether a work-item is active if the bits in the

execute mask and split mask are both set. We show an example of this behaviour in the green table

in Figure 5a. If the execution mask is 1001 and the split mask is 1100, only the first work-item will

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:9

execute because it is set in both masks. When a wavefront splits into two SWFs, the collections of

set bits in each of their split masks are mutually exclusive, as seen in Figure 3b. This means that

each work-item will execute on independent SWFs. Thus, the two SWFs can share the same VRF in

the SIMD unit, reducing the amount of hardware overhead needed.

Within a SIMD or SpSIMD, the WF or SWF contexts are numbered from 1 to 𝑁𝑊𝐹𝐶 using the ID

register. SWFs with the same ID correspond to the same source wavefront before splitting. We use

the parent register and child stack to keep track of this relationship. The parent register represents

the SpSIMDID of the wavefront that created the SWF. The top of the child stack represents the

SpSIMDID of the most recent SWF that was created by this SWF, if one exists. A single wavefront

may split up to S times; thus, the child stack has a depth of S.

split and merge semantics in hardware. Figure 5 shows an example of the split procedure on the

PWS hardware. In this example, we assume that the GPU has one SIMD with one WF context and

two SpSIMDs with one SWF context each. This configuration allows one wavefront to split up

to two times. Figure 5a presents a sample kernel that splits and merges twice. It also presents a

table of split masks to supplement the kernel. The table shows the split masks for each of the three

SWFs at different points in the kernel execution, which are numbered to correspond to the regions

numbered in the kernel code. The next table shows the scalar register values used by the split

instructions. Figure 5b shows the PWS procedure for the second split instruction. The tables in

each block show a selection of important registers and their corresponding values. Note that one of

the SpSIMDs is omitted from the diagram.

SWF
Split Mask

(1) (2) (3)

1 1111 1101 1100

2 - 0010 0010

3 - - 0001

(1) ...

split s0, s1

(2) ...

split s0, s2

(3) ...

merge

(2) ...

merge

(1) ...

Register s0 s1 s2

Value 11 01 00

EM SpM Result

1001 1100 1000

(a) Split mask values

SIMD

WF Context

ID 1

SRF {11, 01, 00}

Child {2,3}

SpM 1100

Register Value

ID 1

SpSIMD

Register Value

ID 3

SWF Context

ID 1

SRF {11, 01, 00}

Parent 1

Child -

SpM 0001

Select

new SWF

Context

Copy SRF

Set split mask

Set child/

parent

split s0, s2

(b) Splitting procedure

Fig. 5. A simple example to demonstrate the hardware semantics of the split instruction

When a wavefront encounters a split instruction, it performs the following procedure. One SWF

will occupy the original context, so the GPU allocates one unused SWF context for the second SWF.

An SWF context is unused if its parent register has not been set. The SWF context must have the

same ID as the original WF context. Notice how in Figure 5b the context ID is 1 for both SWFs.

Next, the GPU copies the SRF contents to the new SWF context, sets the parent register, and pushes

the ID onto the child stack of the original context. In the example, SWF1 is a parent of SWF3 and

SWF3 is a child of SWF1.

Next, the GPU sets the split masks for both SWFs. The split mask of one SWF is set to the

bitwise AND of the previous split mask and the split mask provided by the split instruction. In the

example, we show how SWF1 splits into SWF1 and SWF3 at the second split. The split mask of

SWF1 starts as 1101 and the split mask provided by the instruction is 1100. Hence, the new split

mask of SWF1 is 1101 ∧ 1100 = 1100. The split mask of the second SWF is set to the bitwise AND

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:10 Klashtorny et al.

of the previous split mask and the negation of the split mask. Hence, the new split mask for SWF3

is 1101 ∧ ¬1100 = 0001.

Finally, the new SWF context is ready to enter the SpSIMD execution pipeline, at which point

the GPU transitions the wavefront to the running state. Effectively, this mechanism ensures that

one SWF executes the if path and the other SWF executes the else path of a branch. Whenever an

SWF is ready to execute, all of the SWFs that came from the original parent will execute in parallel

on the separate SpSIMD units, unless they are stalled on a memory instruction or synchronization

barrier. In Figure 5, SWF1, SWF2, and SWF3 will execute in parallel on their respective SpSIMDs.

Note that since an SpSIMD unit also has a child stack, it can also support splitting into further

SWFs.

When the SWF encounters the merge, it is ready to merge with its parent or child wavefront. If the

SWF has child SWFs, then it must merge with the SWF at the top of its child stack; otherwise, the

SWF merges with its parent wavefront. First, the GPU stalls execution until the other SWF reaches

the merge point. Once both SWFs are synchronized at the same instruction, the GPU merges them.

Scalar registers are used for wavefront status, so there is no need to copy these register contents

from one SWF to another. The two SWFs share a VRF, so there is nothing to be done to it. The GPU

chooses the parent of the SWF contexts as a target for the merged WF or SWF. The target context

updates the split mask to be the bitwise OR of the two SWF split masks. In Figure 5a, this behaviour

corresponds with moving from column (3) to (2) and (2) to (1). When moving from column (3) to

(2), SWF1 and SWF3 merge, resulting in a split mask of 1100 ∨ 0001 = 1101; SWF2 does not change.

After the two SWFs merge, the GPU clears the remaining SWF context for reuse by a subsequent

split.

4.2 Compiler flow
In this section, we describe our compiler pass that reduces the WCET of the kernel’s execution on

PWS by pruning kernel CFGs. Figure 6 shows the steps we add to the compiler flow to enable PWS

and its analysis. The “Insert merge” step corresponds to identifying the branch post-dominators and

adding a merge. In this step, we also remove any redundant split or merge instructions.

Executable

Prune Analysis

Kernel

Code

Insert

merge

Compiler

Pass 1

Compiler

Pass 2

Fig. 6. Block diagram of the compiler flow, with added components highlighted

We use implicit path enumeration (IPET) [22] to compute the WCET of a wavefront, 𝐸𝑊𝐹 𝑖 , where

𝑖 is an identifier for each wavefront. IPET computes the WCET using an integer linear programming

formulation with the execution count and WCETs of the basic blocks from the CFG. Although prior

research in using IPET for GPUs [6] can be directly applied to PWS, we find that the computed

WCETs are unduly pessimistic. The key reason for this pessimism is that prior approaches do not

consider parallel execution of diverging branches, which PWS promotes. Hence, prior analyses

compute as though the divergent branches are serialized. We lower theWCET for PWS by providing

IPET with a pruned wavefront CFG that incorporates the static identification of splits and the

parallel execution of SWFs. This allows us to reuse IPET formulation as in prior works [6].

Key intuition in loweringWCET for PWS. To handle branch divergence, the GPU compiler introduces

a sequence of instructions that serializes the execution of divergent paths. We call such a sequence

of instructions a branch serialization block (BSB). We show a canonical CFG representation, 𝐶𝑐𝑜𝑛𝑣 ,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:11

in Figure 7a, and the CFG generated by the GPU compiler, 𝐶𝐵𝑆𝐵 , in Figure 7b. We represent BSBs

using square nodes in the compiled CFG. The divergent branch in both CFGs is 𝐵𝐵1, and the two

branching paths are shown as basic blocks 𝐵𝐵2 and 𝐵𝐵3. However, the CFG generated by the GPU

compiler in Figure 7b inserts a BSB for serialization.

The CFG executes on the GPU as follows. When a wavefront reaches the divergent branch 𝐵𝐵1,

the wavefront evaluates the condition for the branch and accordingly sets the active work-items. If

no work-items need to execute 𝐵𝐵2, the wavefront may skip 𝐵𝐵2 and proceed directly to the BSB.

Otherwise, the entire wavefront proceeds to execute 𝐵𝐵2. Recall that a wavefront can have multiple

work-items, and only active work-items execute instructions in 𝐵𝐵2. Once 𝐵𝐵2 completes, the

execution reaches the BSB. At this point, if there were work-items that had to execute 𝐵𝐵3 instead

of 𝐵𝐵2, then these work-items become active and the entire wavefront executes 𝐵𝐵3. Otherwise, the

wavefront skips 𝐵𝐵3 and proceeds directly to 𝐵𝐵4. Once again, only the active work-items execute

instructions when executing 𝐵𝐵3. Note that the wavefront cannot skip both 𝐵𝐵2 and 𝐵𝐵3 because

all work-items must execute one of the two paths. We highlight the three possible execution paths

in Figure 7c in violet, red, and blue, respectively. Due to the insertion of the BSB, this mechanism

enables the CFG to illustrate how a wavefront serializes branch execution.

BB1

BB2 BB3

BB4

(a) Conventional
CFG, 𝐶𝑐𝑜𝑛𝑣

BB1

BB4

BB2

BB3

(b) CFG with
BSBs, 𝐶𝐵𝑆𝐵

BB1

BB4

BB2

BB3

(c) 𝐶𝐵𝑆𝐵 with
possible paths
annotated

BB1

BB4

BB2

(d) 𝐶𝐵𝑆𝐵

execution
for SWF1

BB1

BB4

BB3

(e) 𝐶𝐵𝑆𝐵

execution
for SWF2

Divergent Branch Branch Path 1 Branch Path 2BSB

Fig. 7. Conventional CFG compared to a GPU CFG with encoded branch serialization

PWS uses the branch serialization mechanism to skip basic blocks. Consider again the example

in Figure 7 executed by a wavefront that splits at 𝐵𝐵1. When the wavefront reaches 𝐵𝐵1, it creates

a new SWF. All work-items that execute 𝐵𝐵2 constitute one SWF and the remaining work-items

that execute 𝐵𝐵3 constitute the other SWF. Consider the first SWF, SWF1, that only consists of

work-items that execute 𝐵𝐵2. At 𝐵𝐵1, it will proceed to 𝐵𝐵2 because its work-items must execute

𝐵𝐵2. Next, it proceeds to the BSB. Since all of the work-items executed 𝐵𝐵2, none of them must

execute 𝐵𝐵3. Hence, the SWF proceeds to 𝐵𝐵4. Thus, this SWF is guaranteed to execute the path

𝐵𝐵1 → 𝐵𝐵2 → 𝐵𝐵4, highlighted in Figure 7d. By a similar process, the second SWF, SWF2, is

guaranteed to execute the path 𝐵𝐵1 → 𝐵𝐵3 → 𝐵𝐵4 in Figure 7e because all of its work-items

execute 𝐵𝐵3 and not 𝐵𝐵2.

SWFs use the wavefront branch serialization mechanism to skip basic blocks that their work-

items do not need to execute. In doing so, SWFs guarantee that a branch will not be serialized and

the SWF will only execute one of the two paths. Hence, the worst-case execution time analysis can

omit some paths in the CFG for SWFs. By eliminating branch serialization in the CFG, we reduce

the resulting wavefront WCET, 𝐸𝑊𝐹 𝑖 . Therefore, PWS can reduce 𝐸𝑊𝐹 𝑖 . For the IPET analysis to

consider this behaviour, we prune the kernel’s CFG to match. For example, removing the edge

between the BSB and 𝐵𝐵3 before solving for the WCET of the CFG gives 𝐸𝑆𝑊 𝐹1
𝑊𝐹

because it disallows

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:12 Klashtorny et al.

execution of 𝐵𝐵3 in the worst case. Applying this CFG pruning to each split point allows us to

determine 𝐸𝑊𝐹 𝑖 for each SWF.

Pruning algorithm. We split our pruning algorithm into two parts and present them in Algorithms 1

and 2. Select takes the kernel CFG, 𝐶𝐵𝑆𝐵 , and the total number of hardware SWF contexts per

wavefront, S, as input parameters. Since each SWF has at least one basic block that it does not

execute, we can remove an edge leading to that block. Select outputs a set of branch nodes for

which to remove edges. Prune uses this set of branch nodes to construct an SWF CFG with some

edges removed to correspond to the WCET of an SWF. We assume that the compiler rejects kernels

with goto statements and performs loop unrolling to reduce the CFG to simple sequences and

branches. Each algorithm iterates through the vertices of 𝐶𝐵𝑆𝐵 . Thus, both algorithms run in

O(|𝑉 |) time, assuming the input CFG is in topological order.

Algorithm 1: Select split point branches given CFG

1 Select(𝐶𝐵𝑆𝐵 = (𝑉 , 𝐸), S)
2 Let 𝑃 ⊂ 𝑉 be the branch nodes marked for splitting

3 Let 𝑠𝑤𝑓𝐶𝑜𝑢𝑛𝑡 ← 0 be a counter for the number of allocated SWFs so far

4 Let 𝑆𝐵 ← ∅ be a set of the currently allocated branch nodes for splitting

5 foreach 𝑢 ∈ 𝑃 in topological order do
6 if ∃𝑣 ∈ 𝑆𝐵 such that Parent(𝑢) = Parent(𝑣) then
7 𝑆𝐵 ← 𝑆𝐵 ∪ {𝑢}
8 else if 𝑠𝑤𝑓𝐶𝑜𝑢𝑛𝑡 < S then
9 𝑆𝐵 ← 𝑆𝐵 ∪ {𝑢}

10 𝑠𝑤𝑓𝐶𝑜𝑢𝑛𝑡 ← 𝑠𝑤𝑓𝐶𝑜𝑢𝑛𝑡 + 1

11 return 𝑆𝐵

We aid the explanation of Algorithms 1 and 2 using the example CFG in Figure 8, assuming that

S = 2. We assume that Select has access to the set of vertices in the CFG that are branch nodes

marked for splitting, denoted as 𝑃 . Figure 8 highlights these nodes in orange and the lists out the

nodes in 𝑃 .

Algorithms 1 and 2 also rely on some functions which they use as subroutines. Given a branch

node or BSB 𝑢, we use the subroutine Reconv(𝑢) to compute the basic block at which the two

branching paths reconverge. In Figure 8, Reconv(1) = Reconv(12) = 18 and Reconv(2) =

Reconv(4) = 6. Next, SuccBB(𝑢) determines the successor to a node 𝑢 that is not a BSB or a

reconvergence point. Similarly, BSB(𝑢) determines the successor to a node 𝑢 that is a BSB. These

relationships are shown for node 1 in Figure 8. We also use a function called Parent to determine

the outer branch or BSB that is a dominator of a given node. Note that a dominator of node 𝑢 is a

node 𝑣 such that every path to node 𝑢 first passes through 𝑣 .

Definition 4.1. The function Parent(u) is defined as

Parent(𝑢) = 𝑣, 𝑣 < 𝑢 < Reconv(𝑣), 𝑢, 𝑣 ∈ 𝐵 (1)

where 𝐵 is the set of all branch nodes and BSBs and the inequality is defined with respect to the

topological ordering of the CFG.

In Figure 8, Parent(2) = Parent(7) = 1, Parent(13) = 12, and Parent(1) = 0. The function

allows the algorithm to determine when two branches are in sequence with each other, such as

nodes 2 and 7.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:13

Algorithm 2: Prune CFG for the SWF with the largest WCET

1 Prune(𝐶𝐵𝑆𝐵 = (𝑉 , 𝐸), 𝑆𝐵)
2 Let 𝐵 ⊂ 𝑉 be the set of all branch nodes

3 Let 𝐿 ⊂ 𝑉 be the set of all BSBs

4 Let 𝐸𝑟 ← ∅ be the set of edges to remove

5 Let 𝐹 be a numerical array of size |𝑉 | + 1
6 𝐹 [|𝑉 | + 1] ← 0

7 foreach 𝑢 ∈ 𝑉 in reverse topological order do
8 if 𝑢 ∈ 𝐵 then
9 𝐹 [SuccBB(𝑢)] ← 𝐹 [SuccBB(𝑢)] − 𝐹 [BSB(𝑢)] + 𝐹 [Reconv(𝑢)]

10 if 𝑢 ∈ 𝑆𝐵 then
11 𝐹 [𝑢] ← max(𝐹 [SuccBB(𝑢)], 𝐹 [BSB(𝑢)])
12 if 𝐹 [SuccBB(𝑢)] < 𝐹 [BSB(𝑢)] then
13 𝐸𝑟 ← 𝐸𝑟 ∪ {𝑢 → SuccBB(𝑢) }
14 else
15 𝐸𝑟 ← 𝐸𝑟 ∪ {BSB(𝑢) → SuccBB(BSB(𝑢)) }

16 else
17 𝐹 [𝑢] ← 𝐹 [SuccBB(𝑢)] + 𝐹 [BSB(𝑢)] − 𝐹 [Reconv(𝑢)]

18 𝐹 [𝑢] ← 𝐹 [𝑢] + 𝑒𝑢
𝑏𝑏
+ 𝑒BSB(𝑢)

𝑏𝑏

19 else if 𝑢 ∉ 𝐿 then
20 𝐹 [𝑢] ← 𝐹 [SuccBB(𝑢)] + 𝑒𝑢

𝑏𝑏

21 else
22 𝐹 [𝑢] ← 𝐹 [SuccBB(𝑢)]

23 return𝐶𝑜𝑢𝑡 ← (𝑉 , 𝐸 \ 𝐸𝑟)

2 64

3

5

121 18

7 119

8

10

13 1715

14

16

= 1, 2, 7, 13

= {1, 2, 7}

(1)

[]

1 6 37

2 4 30

3 3 34

4 2 37

5 6 37

6 4 31

7 4 29

8 5 24

9 1 23

[]

10 4 23

11 3 19

12 3 16

13 1 16

14 1 12

15 1 11

16 2 11

17 5 9

18 4 4

Branch Branch Path 1

Branch Path 2BSB

= { 2 , 5 , 6}

Fig. 8. A sample CFG illustrating the components of Algorithm 1

The algorithms proceed as follows. First, Select iterates through each member, 𝑢, of the set 𝑃 in

topological order. If there are unallocated SWF contexts available, it will select the branch node

for splitting. Notice that branch node 13 is marked for splitting by the GPU programmer but not

selected by the algorithm. This is because there are not enough SWF contexts (S = 2) to support it

by the time the algorithm reaches the node. When a branch node is selected for splitting, it will

add the node to the set 𝑆𝐵.

Another way a branch node may be selected for splitting is if it can reuse an SWF context and

the corresponding SpSIMD unit. Recall that we allow SWFs to merge once they have reached their

post-dominator. The process of merging frees an SWF context, which enables another branch to

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:14 Klashtorny et al.

use the SWF context. Consequently, if there are two branch nodes in sequence with each other,

they do not need to use SWF contexts simultaneously and can both be allocated for splitting. For

example, branch nodes 2 and 7 are in sequence with each other and may both use the same SWF

context for splitting. The algorithm handles this case for a branch node, 𝑢, by checking if one of

the branch nodes in 𝑆𝐵 already contains a branch node, 𝑣 , where Parent(𝑢) = Parent(𝑣). The
hardware execution shown in Figure 2d demonstrates how PWS reuses the SpSIMD unit to split

two different branch nodes. In that example, the split operation at 𝐵𝐵7 reuses the SWF hardware

on SpSIMD1.

Once Select completes, it returns a set of branch nodes that PWS will choose as split points, 𝑆𝐵.

If |𝑆𝐵 | < S, we can determine that there will be 𝑁𝑢𝑛𝑢𝑠𝑒𝑑 = (S − |𝑆𝐵 |) unused SpSIMD units per

SIMD unit. Using |𝑆𝐵 |, PWS can provision some of the idle units as SIMD units with a corresponding

number of |𝑆𝐵 | SpSIMD units each. The new total number of SIMD units is given by

𝑁 𝑡𝑜𝑡𝑎𝑙
𝑆𝐼𝑀𝐷 = 𝑁𝑆𝐼𝑀𝐷 +

⌊
𝑁𝑢𝑛𝑢𝑠𝑒𝑑 × 𝑁𝑆𝐼𝑀𝐷

|𝑆𝐵 | + 1

⌋
(2)

which allows every SIMD unit to have |𝑆𝐵 | SpSIMD units associated with it. For example, consider a

CU that has four SIMD units with three SpSIMDs allocated per SIMD unit (i.e. S = 3). If Algorithm 1

outputs 𝑆𝐵 such that |𝑆𝐵 | = 1, then two SpSIMDs will be idle per SIMD unit. These idle SpSIMDs

can be re-provisioned into four SIMDs and four SpSIMDs, for a total of eight SIMD units and

eight SpSIMD units on the CU. Using this static information about the number of split operations

required by the kernel, PWS can determine how many idle SpSIMDs there will be to reuse and how

to re-purpose them.

Using the output set 𝑆𝐵 from Select, Prune removes edges from 𝐶𝐵𝑆𝐵 . At every split point in

𝑆𝐵, each SWF will skip one of the two branch paths. Prune chooses which of these two paths has

the smaller total WCET and removes an edge leading to this path to indicate that the SWF will not

execute it. Prune keeps track of the WCET from each node to the end of the CFG using array 𝐹 .

Figure 8 shows the values in 𝐹 after Prune executes given 𝑒𝑢
𝑏𝑏

for each node 𝑢.

The algorithm proceeds through each node in 𝐶𝐵𝑆𝐵 in reverse topological order, with an extra

element 𝐹 [|𝑉 | + 1] = 0. At each node 𝑢, it adds the value 𝑒𝑢
𝑏𝑏

to the total from the node’s successor.

For branch nodes, it compares the value in 𝐹 for each of the two branching paths. If the branch

node is not in 𝑆𝐵, this means that the wavefront will not split at this branch node and the GPU

will serialize the execution of the two branch paths. Hence, the contribution to the overall WCET

will be the sum of the two branch path execution times. Therefore, the algorithm updates 𝐹 [𝑢]
to this sum. For example, since branch node 13 is not in 𝑆𝐵, 𝐹 [13] = 𝐹 [14] + 𝐹 [16]. If the branch
node is in 𝑆𝐵, then the algorithm updates the value of 𝐹 [𝑢] to the maximum of the two branch

path executions. In the example, 𝐹 [2] = max(𝐹 [3], 𝐹 [5]). When 𝑢 ∈ 𝑆𝐵, Prune removes the first

edge to one of the two branch paths corresponding to the branch with the smaller execution time.

For example, Prune removes 𝑒2 because 𝐹 [3] < 𝐹 [5]. It adds each edge to be removed to set 𝐸𝑟 .

Once Prune completes its pass through𝐶𝐵𝑆𝐵 , it outputs𝐶𝑜𝑢𝑡 = (𝑉 , 𝐸 \𝐸𝑟) with these edges pruned.

Figure 8 lists all edges in 𝐸𝑟 .

Note that the choice of split points in the kernel can affect the WCET and is an interesting

optimization problem which we do not explore in this paper; we reserve it for future work. Never-

theless, PWS provides a mechanism for marking split points and guaranteeing that SWFs execute

in parallel in the worst case. Given this information, Select and Prune can reduce the WCET of a

kernel CFG for a wavefront.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:15

5 WORST-CASE EXECUTION TIME ANALYSIS
There are two parts to the WCET analysis of a kernel: (1) computing the WCET of a wavefront,

and (2) using the WCET of a wavefront to compute the kernel’s WCET. We extend an existing

hybrid WCET analysis to support the proposed GPU architecture with PWS [6]. We summarize the

symbols we use for this analysis in Table 1.

Table 1. System model symbols

(a) Hardware constructs

Name Description
𝑁𝐶𝑈 # CUs on GPU

𝑁𝑆𝐼𝑀𝐷 # SIMDs per CU

𝑁𝑊𝐼𝑊 𝐹 # work-items per WF

𝑁𝑊𝐹𝐶 # WF contexts per SIMD

S # SpSIMDs per WF

(b) Software constructs

Name Description
𝑁𝑊𝐼𝑊𝐺 # WIs per WG

𝐺 # WGs

𝐸𝑘𝑒𝑟𝑛𝑒𝑙 WCET of the kernel

𝐸𝑊𝐹 𝑖 WCET of WF 𝑖

𝑒
𝑗

𝑏𝑏
WCET of basic block 𝑗

Inputs to the analysis. To compute the WCET of a kernel, we assume the following inputs.

(1) The number of CUs, 𝑁𝐶𝑈 , SIMDs per CU, 𝑁𝑆𝐼𝑀𝐷 , and wavefront contexts per SIMD, 𝑁𝑊𝐹𝐶 .

These are properties of the GPU’s hardware implementation. We assume that𝑁𝐶𝑈 = 𝑁𝑆𝐼𝑀𝐷 =

4, based on recent AMD architectures [2, 3].

(2) The kernel launch parameters: the number of workgroups, 𝐺 , and the number of work-items

per workgroup, 𝑁𝑊𝐼𝑊𝐺 . These are provided by the GPU programmer; all kernels have them.

(3) The WCET of every basic block in the kernel, 𝑒
𝑗

𝑏𝑏
, where 𝑗 indicates the basic block identifier.

These can be obtained by performing static timing analysis [12] or by using measurement-

based analysis approaches [6].

(4) The initialization delay, 𝑑𝑖 , suffered by wavefront 𝑖 . The initialization delay is defined as the

delay the first instruction in the workgroup experiences from the time the workgroup is

dispatched to the execution of the first instruction. As with 𝑒
𝑗

𝑏𝑏
, 𝑑𝑖 values can be determined

through static timing analysis or measurement-based analysis.

(5) The worst-case delay involved in splitting, 𝑒𝑠 , and merging SWFs, 𝑒𝑚 . We determine these

constant values from our design.

WCET of a wavefront. To determine 𝐸𝑊𝐹 , we use Algorithms 1 and 2. Using each CFG in the

output set 𝐷 , we construct the flow constraints for a set of IPET optimization problems. We use an

ILP solver to solve these problems, giving 𝐸𝑊𝐹 𝑖 for each SWF. We call the largest of these values

𝐸𝑊𝐹 , plus the cost of splitting and merging each of the SWFs, 𝑒𝑠 and 𝑒𝑚 , multiplied by the number

of SWFs, |𝑆𝐵 |, allocated by Algorithm 1.

Lemma 5.1. The WCET of a single wavefront, 𝐸𝑊𝐹 , is given by

𝐸𝑊𝐹 = IPET(𝐶𝑜𝑢𝑡) + |𝑆𝐵 | × (𝑒𝑠 + 𝑒𝑚), (3)

where 𝑆𝐵 = Select(𝐶,S) and 𝐶𝑜𝑢𝑡 = Prune(𝐶, 𝑆𝐵)

Proof. To prove Lemma 5.1, we separately show that each term in the expression for 𝐸𝑊𝐹 is

an upper bound. The first term uses the output CFG from Prune, 𝐶𝑜𝑢𝑡 , as an input to the IPET

formulation. By removing the edges corresponding to the shorter branch path for each branch in

𝑆𝐵, we ensure that the execution path of the SWF executing 𝐶𝑜𝑢𝑡 is a maximum. Finally, each SWF

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:16 Klashtorny et al.

has split up to |𝑆𝐵 | times, meaning that the total cost of splitting and merging will be no more than

|𝑆𝐵 | multiplied by the cost to split and merge once. Therefore, each term is an upper bound on the

execution time of a wavefront and Lemma 5.1 holds. □

When the first of two SWFs reaches a merge point, it must stall its execution. This stalling

behaviour does not make any additional impact on the WCET given in Lemma 5.1. This is because

we compute the analytical WCET based on the SWF that takes the longest to execute each branch.

Recall that we can do this because we guarantee that diverging branches execute in parallel. The

faster SWF at each branch cannot stall past the point when the slower SWF reaches the merge

point. Algorithms 1 and 2 output 𝐶𝑜𝑢𝑡 , which represents the execution of an SWF that executes

the path with the larger execution time each of the split points. This guarantees that the SWF that

executes 𝐶𝑜𝑢𝑡 takes the longest possible execution time and will not need to stall to wait for its

parent or child SWF.

WCET of a kernel using PWS. Using the individual wavefront WCET, 𝐸𝑊𝐹 , we compute the

WCET of the entire kernel on the GPU, 𝐸𝑘𝑒𝑟𝑛𝑒𝑙 . We use Figure 9 to illustrate the components of

𝐸𝑘𝑒𝑟𝑛𝑒𝑙 . Figure 9a shows a sample execution of three workgroups that have two wavefronts each.

Recall that the GPU workgroup dispatcher distributes workgroups to available WF contexts on GPU

hardware. We refer to the number of workgroups the GPU can dispatch simultaneously as𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .

The GPU used in the execution in Figure 9a has enough resources to execute two workgroups in

parallel. In the diagram, each row𝑊𝐹𝑘𝑖 represents the 𝑖-th wavefront in the 𝑘-th workgroup. The

workgroups are outlined and labelled in green boxes. Within a workgroup box, each wavefront

execution timeline consists of the initialization delay, 𝑑𝑘𝑖 , and the wavefront execution time, 𝐸𝑊𝐹
𝑘
𝑖 .

Notice that in the sample execution, there are a variety of execution times for 𝑑𝑘𝑖 and 𝐸𝑊𝐹
𝑘
𝑖 .

= max
,

= max
,

Time

1
2

2
2 2

2

1
2

2

2

1

22

1
1

2
1 2

1

1
1

2

1

1

11

1
3

2
3 2

3

1
3

2

3

1

33

disp1 disp2

(a) Sample execution of a kernel

Timedisp1 disp2

(b) Sample kernel worst case

Fig. 9. A sample GPU kernel execution timeline and its worst case

Figure 9b illustrates how we use the sample kernel execution to compute the WCET of the

kernel. For this example, we use the largest initialization delay from all wavefronts, and the largest

wavefront execution time, 𝑑 and 𝐸𝑊𝐹 , respectively. At the start of the timeline, the GPU dispatches

a set of 𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 workgroups to the WF contexts. When a workgroup completes execution, the

GPU may dispatch a new workgroup. In the worst case, every wavefront in each workgroup is

guaranteed to complete execution after 𝑑 + 𝐸𝑊𝐹 , which allows the GPU to dispatch another set

of 𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 workgroups. We refer to these dispatch points in time with the prefix 𝑑𝑖𝑠𝑝; there are

𝐷𝑆 such points and the GPU needs to dispatch a set of 𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 workgroups 𝐷𝑆 times to execute

all 𝐺 workgroups. The kernel’s WCET, 𝐸𝑘𝑒𝑟𝑛𝑒𝑙 , reaches its endpoint when all workgroups finish

executing the kernel.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:17

Workgroup serialization. In Figure 9b, 𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 workgroups can execute in parallel. To determine

𝐸𝑘𝑒𝑟𝑛𝑒𝑙 , we derive how many kernel dispatches, 𝐷𝑆 , are needed to execute all 𝐺 workgroups

specified by the programmer. First, we define how many workgroups can run simultaneously on

GPU hardware. There are a total of 𝑁𝐶𝑈 ×𝑁 𝑡𝑜𝑡𝑎𝑙
𝑆𝐼𝑀𝐷

×𝑁𝑊𝐹𝐶 WF contexts available at dispatch. Recall

that we defined 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑆𝐼𝑀𝐷

in Equation 2 as the total number of SIMD units after re-provisioning all

extraneous SpSIMD units. Thus, there are 𝑁𝐶𝑈 ×𝑁 𝑡𝑜𝑡𝑎𝑙
𝑆𝐼𝑀𝐷

×𝑁𝑊𝐹𝐶 ×𝑁𝑊𝐼𝑊 𝐹 work-items across all WF

contexts. Each workgroup is defined as having 𝑁𝑊𝐼𝑊𝐺 work-items, so the hardware work-items

can be divided into groups of 𝑁𝑊𝐼𝑊𝐺 work-items.

Definition 5.2. The number of workgroups that can execute simultaneously in parallel on GPU

hardware is given by

𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

⌊
𝑁𝐶𝑈 × 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑆𝐼𝑀𝐷
× 𝑁𝑊𝐹𝐶 × 𝑁𝑊𝐼𝑊 𝐹

𝑁𝑊𝐼𝑊𝐺

⌋
(4)

Next we define the total number of workgroup dispatches in the worst case.

Definition 5.3. The total dispatch count in the worst case, 𝐷𝑆 , is given by

𝐷𝑆 =

⌈
𝐺

𝐺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

⌉
(5)

Critical instance. Next, we establish the critical instance. This instance relies on conditions for 𝐸𝑊𝐹 ,

𝑑 , 𝐷𝑆 , and S.

Lemma 5.4. A kernel exhibits its WCET when (1) all wavefronts split exhibit the wavefront WCET,

𝐸𝑊𝐹 , (2) each workgroup experiences the worst-case initialization delay, 𝑑 , and (3) a series of 𝐷𝑆

workgroups executes serially.

Proof. For (1), a workgroup cannot complete execution until the final wavefront is done; thus,

if the final wavefront takes less time than 𝐸𝑊𝐹 , the next workgroup can start earlier. Hence, 𝐸𝑘𝑒𝑟𝑛𝑒𝑙
will be reduced. By Lemma 5.1, the wavefront execution time also cannot exceed 𝐸𝑊𝐹 . Thus, the

final wavefront of all workgroups must have an execution time of 𝐸𝑊𝐹 in the worst case. Similarly,

for (2), if any workgroup exhibits less than the worst-case initialization delay, then there is a

reduction in 𝐸𝑘𝑒𝑟𝑛𝑒𝑙 . Thus, each workgroup must exhibit the 𝑑 in the worst case. Finally, (3) holds

by Definition 5.3. □

𝐸𝑘𝑒𝑟𝑛𝑒𝑙 with PWS. In the PWS implementation, each SWF can run in parallel with the original

wavefront. As a result, they are guaranteed to be able to execute in parallel in the worst case.

Lemma 5.5 (PWS). The WCET of executing a workload with PWS is given by

𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

= 𝐷𝑆 ×
(
𝑑 + 𝐸𝑃𝑊𝑆

𝑊 𝐹

)
(6)

Proof. The WCET of each workgroup, of which 𝐷𝑆 execute serially, is characterized by the final

wavefront to complete execution. By definition, this wavefront will start execution with a delay of

𝑑 from the time the GPU dispatches the workgroup. Given the availability of S SpSIMDs dedicated

to SWFs, we can guarantee that the S SWFs that were created from the same source wavefront

will execute in parallel with the source wavefront. From Lemmas 5.1 and 5.4, the WCET of the final

wavefront to complete execution is 𝐸𝑃𝑊𝑆
𝑊 𝐹

. □

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:18 Klashtorny et al.

5.1 𝐸𝑘𝑒𝑟𝑛𝑒𝑙 with DWS
Lemma 5.6. The worst-case wavefront execution times for PWS and DWS are related by

𝐸𝑃𝑊𝑆
𝑊 𝐹 ≤ 𝐸𝐷𝑊𝑆

𝑊𝐹 (7)

Proof. Given S, the number of SWFs is the same for both DWS and PWS in the worst case.

Thus, the values for each 𝑒
𝑗

𝑏𝑏
are the same between the two mechanisms. Each CFG contains a set

𝐵 of branch nodes. Since branches are not marked for splitting in DWS, the GPU may arbitrarily

select any S branches from 𝐵 for splitting. In the worst case, DWS selects the branches that result

in the largest WCET. On the other hand, Select will select branch nodes from 𝑃 ⊆ 𝐵 for PWS.

The set 𝑃 may not contain all nodes that result in the largest WCET. If 𝑃 does not contain all such

nodes, then 𝐸𝑃𝑊𝑆
𝑊 𝐹

< 𝐸𝐷𝑊𝑆
𝑊𝐹

; otherwise, 𝐸𝑃𝑊𝑆
𝑊 𝐹

= 𝐸𝐷𝑊𝑆
𝑊𝐹

. Therefore, Lemma 5.6 holds. □

In the case of DWS, we have no guarantee about where wavefronts will split, even if S is given.

Without this guarantee, the worst-case analysis for DWS must assume that it will split at the worst

choices of S branch nodes. Furthermore, the absence of hardware specifically provisioned for SWFs

means the GPU must serialize the execution of all SWFs. Note that, if S = 0, 𝐸𝑘𝑒𝑟𝑛𝑒𝑙 is the WCET

of the kernel without splitting.

Lemma 5.7 (DWS). The WCET of executing a workload with SWFs but without special hardware

dedicated to SWFs is given by

𝐸𝐷𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

= 𝐷𝑆 ×
(
𝑑 + (S + 1) × 𝐸𝐷𝑊𝑆

𝑊𝐹

)
(8)

where 𝐸𝐷𝑊𝑆
𝑊𝐹

is the 𝐸𝑊𝐹 computed under DWS.

Proof. The WCET of each workgroup, of which 𝐷𝑆 execute serially, is characterized by the

final wavefront to complete execution. By definition, this wavefront will start execution with a

delay of 𝑑 from the time the GPU dispatches the workgroup. When the GPU creates SWFs, there is

no guarantee that the SWFs execute in parallel. Therefore, the SWFs execute serially in the worst

case. Since SWFs compete for the same hardware as other WFs, there is no guarantee that they will

execute in parallel. Furthermore, each wavefront will split into S SWFs. Hence, the WCET of each

wavefront corresponds to its own execution time plus the sum of each of the executions of the S
SWFs it creates. □

Lemma 5.8. The worst-case kernel execution times for PWS and DWS are related by

𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

≤ 𝐸𝐷𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

(9)

Proof. By Lemma 5.6, 𝐸𝑃𝑊𝑆
𝑊 𝐹

≤ 𝐸𝐷𝑊𝑆
𝑊𝐹

. Observing Lemmas 5.5 and 5.7, the key difference between

the expressions for 𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

and 𝐸𝐷𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

is the multiplication of 𝐸𝐷𝑊𝑆
𝑊𝐹

by S. Using these two results,

𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

≤ 𝐸𝐷𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

. □

This result emphasizes the increase in the WCET when the GPU hardware does not support

parallel hardware for SWFs. However, the architectural changes to the GPU introduced by PWS

mitigate this issue and guarantee parallel execution. PWS provisions extra SpSIMD units for each

existing SIMD unit. The number of SpSIMD units per SIMD unit is statically known and constant.

Hence, S SWFs can execute on SIMD and SpSIMD units in parallel. Using static knowledge of the

number of SpSIMD units, we can guarantee these SWFs execute in parallel. This is not the case for

DWS; if the GPU programmer uses DWS, diverging branches executed by SWFs are serialized in

the worst case. This is the reason for the result in Lemma 5.8.

To illustrate the result in Lemma 5.8, we revisit the simple example CFG in Figure 8. We can

use this example to illustrate how PWS results in a lower WCET than DWS. We assume that the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:19

𝑒
𝑗

𝑏𝑏
values are kept the same as in the table in Figure 8 and that 𝑆𝐵 = {1, 2, 7} and S = 2 as before.

For simplicity, we assume that 𝑑 , 𝑒𝑠 , 𝑒𝑚 , and 𝐷𝑆 are all equal to 1. In the case of DWS, there is no

guarantee that SWFs will execute in parallel because there are no additional SpSIMD units. Hence,

𝐸𝐷𝑊𝑆
𝑊𝐹

is the sum of all basic block execution times and the costs to split and merge SWFs. Using

this 𝐸𝐷𝑊𝑆
𝑊𝐹

, we compute 𝐸𝐷𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

using Lemma 5.7, resulting in an overall WCET of 192. Conversely,

the PWS analysis starts with a pruned CFG with edges 𝑒2, 𝑒5, and 𝑒6 removed. By Lemmas 5.1 and

5.5, 𝐸𝑃𝑊𝑆
𝑊 𝐹

= 48 and 𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

= 49. We summarize these results in Table 2, along with a comparison

to the case where splitting is not enabled, which is the way existing GPU architectures operate.

Table 2. Analytical WCET values for No Splitting, DWS, and PWS based on the example in Figure 8.

WCET reduc on

under PWS over DWS

WCET reduc on under

PWS over No Spli ng
PWSDWS

No

Spli ng

59%13%52127601

74%18%49192602

81%22%47245603

It is clear that the 𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

is considerably lower than 𝐸𝐷𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

, by as much as 81% in the given

example.

6 RELATEDWORK

Dynamic wavefront splitting. There have been several prior works that address branch diver-

gence through wavefront splitting. Meng et al. proposed the first dynamic wavefront splitting

method to reduce branch divergence [15]. When a wavefront encounters branch divergence, it

creates two SWFs, where each SWF is a separate schedulable entity equivalent to a wavefront. If

the SWF encounters a stall, the remaining work-items in another SWF can still be scheduled to

execute because they may be free of dependencies. This behaviour can provide a performance gain

over not splitting in the case where all wavefronts would be stalled executing a serialized branch.

Rhu and Erez [18] improve on DWS with a new reconvergence data structure to allow splits to

merge at the immediate post-dominator of a branch. Brunie et al. propose allowing work-items

from the same wavefront to execute distinct instructions simultaneously by doubling the number

of work-items in a wavefront while cutting the number of wavefronts in half [9].

A more recent work by Damani et al. explores the hardware requirements for implementing

wavefront splitting [10]. This work also separates the work-items within a wavefront, but performs

scheduling at the work-item level, in addition to the wavefront level. The status of each work-item

is tracked using a finite state machine and the status information is kept in a status table. All

work-items which are ready constitute an SWF. The wavefront scheduler selects the wavefront

which should execute based on if any of its work-items are ready for execution.

Reverse-engineering commercial GPUs. Several prior works by Otterness and Anderson have

aimed to publish more information about closed-source or poorly documented implementation

details of NVIDIA and AMD GPUs [4, 16, 21] in order to better understand their behaviour for real-

time and safety-critical systems. In [21], the authors identify the issues with using NVIDIA GPUs

for safety-critical systems. For example, the behaviour of NVIDIA GPUs is often different than what

is presented in the official documentation and there are undocumented implicit synchronization

constructs which impede real-time analysis of these GPUs. They also investigate AMD GPUs

in [16]. They show that, since the AMD software stack is open source, it makes AMD GPUs a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:20 Klashtorny et al.

more attractive choice for supporting real-time systems than NVIDIA GPUs. Although these prior

works have advanced the state-of-the-art in being able to use GPUs for safety-critical systems, the

performance impact of branch divergence continues to be a challenge for these works as well. PWS

address this challenge by proposing a predictable approach for wavefront splitting.

Vector processors in safety-critical systems. Some prior works have proposed vector proces-

sor and GPU designs for safety-critical systems. Platzer and Puschner present Vicuna, a vector

coprocessor implementing the vector extension to the RISC-V standard [17]. They show that their

implementation is timing predictable by showing that its execution is free of timing anomalies. The

architecture of Vicuna eliminates timing anomalies by enforcing a strict ordering of instructions

and removing optimizations that make analysis more complex. A similar work by Spliet and Mullins

presents Sim-D [20], which is a vector processor that separates workgroup execution into several

uninterruptable compute and access phases. The execution times of these phases can be determined

statically because they cannot interfere with each other on the available functional units.

7 RESULTS
In this section, we use an implementation of PWS to demonstrate its impact on the WCET of

a kernel. We also show that PWS can still offer a benefit to the average-case performance of a

workload, similar to DWS. We summarize the results in graphical form in Figures 10 and 11.

Experimental setup. To the best of our knowledge, a freely available RTL implementation of

an AMD GPU is not available. Further, we find that GPU micro-architectural simulators are both

appropriate and commonly used in architectural exploration. As a result, we use the AMD gem5

implementation. Recent research papers that propose architectural changes to the GPU also make

use of this simulator to evaluate proposed micro-architectural extensions, such as [7]. To that end,

we implement DWS and PWS in the gem5 simulator [13], using the AMD GCN3 ISA and use it for

evaluation.

We evaluate PWS against existing GPU architectures, which do not split wavefronts, and GPUs

that implement DWS [15], the state-of-the-art approach to improving performance under branch

divergence. When existing GPUs encounter branch divergence, they serialize the execution of the

two branch paths. We refer to this configuration as no splitting. To test this configuration, we use

the existing gem5 GPU implementation without any modifications. By contrast, DWS provides a

mechanism for the GPU to respond to branch divergence by dividing the work-items in a wavefront

into separate SWFs. At runtime, DWS detects when the wavefront encounters a divergent branch in

the kernel and splits the wavefront into two SWFs. The work-items in the wavefront are partitioned

based on the branch path they take. These SWFs share the same SIMD unit execution resources. Our

version of DWS implements these attributes, making it most similar to prior DWS implementations

by Damani et al. [10] and Rhu and Erez [18].

Our experimental implementation of PWS functions as described in Section 4. The splitting

mechanism is the same as DWS other than two key differences. First, we use the split and merge

instructions to determine when a wavefront should split. Second, we provision dedicated SpSIMD

units to guarantee parallel execution of SWFs. We compare PWS both to the no splitting and DWS

configurations. Note that both PWS and DWS have a maximum number of SWFs that the GPU can

create for each wavefront. We denote this with S for our analysis.

Benchmarks. We use the Rodinia benchmark suite [19] to evaluate PWS. The Rodinia suite is

designed for heterogeneous computing across a variety of applications. AMD maintains a version

of these benchmarks written in HIP, the AMD counterpart to CUDA, making it natively compatible

with the simulator GPU architecture. This benchmark suite is a good representation of today’s

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:21

GPU workloads. The Rodinia suite consists of a variety of programs from different domains such

as machine learning, graphs analytics, and computer vision. Furthermore, it is a key benchmark

suite used in recent research works, such as [23].

In addition, we supplement the Rodinia benchmarks with our set of synthetic benchmarks. These

synthetic benchmarks are designed to exercise the worst-case scenario, which the Rodinia suite

may not do. Furthermore, in the synthetic benchmarks, the number of divergent instructions can

be controlled enabling us to perform qualitative comparisons against state-of-the-art approaches.

The basic structure of our synthetic benchmarks consists of three parts: (1) non-divergent

instructions where all work-items in the wavefront execute the instructions unconditionally, (2)

conditionals in the form of nested if-else statements where the conditionals are predicated on

work-item identifiers, and (3) divergent instructions where a subset of work-items in the wavefront

execute instructions based on the outcome of the conditionals. Both (1) and (3) constitute arithmetic

and memory operations. All three parts are configurable in the synthetic benchmarks.

In Figure 10a, the horizontal axis represents the percentage of divergent instructions present in

the application. The 100% divergent instructions scenario in Figure 10a corresponds to a synthetic

benchmark setup where each work-item in the wavefront executes a different instruction; there are

no non-divergent instructions. The 25% divergent instructions scenario in Figure 10a corresponds to

a synthetic benchmark setup where 75% of instructions (other than conditionals) are non-divergent

instructions (all threads in the wavefront execute the same instructions albeit on different data)

and 25% of the instructions (other than conditionals) are divergent instructions.

In Figure 10b, the horizontal axis represents the percentage of memory instructions. For the data

shown in Figure 10b, all the instructions in the synthetic benchmark are divergent. We change the

composition of the divergent instructions by changing the number of memory instructions present

in the divergent instructions. For example, the 25% memory instructions scenario in Figure 10b

corresponds to a synthetic benchmark setup where all instructions are divergent, and the percentage

of memory and arithmetic instructions in the divergent instructions are 25% and 75%, respectively.

Worst-case behaviour of PWS. We compute the WCET of PWS using a measurement-based

approach to obtain values for each 𝑒
𝑗

𝑏𝑏
and 𝑑𝑖 . The starting point for the measurements for each

wavefront occurs when it transitions to the running state and is ready to fetch its first instruction.

The end point for these measurements is when the wavefront executes an end-of-program instruc-

tion and transitions to the stopped state. Accurately computing 𝐸𝑊𝐹 𝑖 also requires upper bounds

on the number of iterations on each loop. We statically control the number of loop iterations in the

synthetic benchmark and use this bound to solve for 𝐸𝑊𝐹 . Finally, we measure the total execution

time of each kernel for performance data and to determine the observed WCET.

We compute three different WCET values: observed, analytical for PWS, and analytical for DWS.

The first is the observed WCET, which is computed as the maximum of all kernel execution times

for a given benchmark of fixed input size, if applicable. If a GPU program has multiple kernels,

the WCET is the sum of the individual kernel WCETs. To compute the analytical WCET, we first

construct a CFG using each 𝑒
𝑗

𝑏𝑏
. Next, we use Select and Prune with this CFG to compute 𝐸𝑊𝐹 .

Finally, we use Lemma 5.5 with the maximum measured 𝑑𝑖 and the benchmark parameters𝐺 and

𝑁𝑊𝐼𝑊𝐺 to compute 𝐸𝑃𝑊𝑆
𝑘𝑒𝑟𝑛𝑒𝑙

. To model the analytical WCET of DWS, we use the same measured

𝑒
𝑗

𝑏𝑏
and 𝑑𝑖 values as inputs. Since DWS does not guarantee parallel execution, we do not apply

Select and Prune to the CFG, and use Equation 3 to determine 𝐸𝑊𝐹 , where𝐶𝑜𝑢𝑡 = 𝐶 and |𝑆𝐵 | = S.
Finally, we use Lemma 5.7 to compute 𝐸𝐷𝑊𝑆

𝑘𝑒𝑟𝑛𝑒𝑙
.

We start by comparing the impact of PWS on the WCET compared to DWS in Table 3. The table

compares the WCET of both techniques for the synthetic benchmark given a maximum number of

divergent instructions. It presents the cycle counts of the observed and analytical WCETs; note

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:22 Klashtorny et al.

that the data is presented in terms of thousands of cycles for brevity. For PWS, we annotate as

many split points as there are SpSIMD units. Hence, all SpSIMD units are utilized and we do not

need to perform any re-provisioning. With DWS, the analytical WCET increases linearly with the

value of S. This result is a consequence of the the S + 1 factor in Lemma 5.7. Hence, splitting with

DWS results in a much larger WCET than PWS. We highlight this as a reduction percentage in

the rightmost column of the table in Table 3. It shows how PWS provides a much better reduction

in the WCET than DWS, as much as 88% when S = 7. Finally, these results also show that the

analytical WCET serves as an upper bound for the observed WCET.

Table 3. WCET cycle counts, reported in thousands of cycles, for PWS and DWS executing the synthetic
benchmark with maximum branch divergence and the associated reduction under PWS compared to DWS.

PWS Analy cal WCET

Reduc on Compared

to DWS

PWSDWSNo Spli ng

Analy calObservedAnaly calObservedAnaly calObserved

50%3001506001406805001

75%22030870506805003

88%180151440456805007

In Figure 10, we show data for a range of values of S. The reductions in WCET that we report

are compared to the case when wavefronts do not split as the baseline. Again, we annotate as many

split points as there are SpSIMD units such that we do not need to perform any re-provisioning.

Using Figure 10, we start by showing the impact of PWS on theWCET of the synthetic benchmark

through several parameter sweeps. Figure 10a shows the impact of the number of instructions that

are divergent on the overall reduction in the WCET. As expected, the data shows that workloads

with greater amounts of divergence benefit more from PWS. Next, Figure 10b shows the impact

of number of memory instructions. Here, each version of the synthetic benchmark has a varying

number of branches that contain memory instructions. The SWFs created by PWS interfere with

each other in the memory hierarchy. Hence, there is less of a WCET reduction for workloads that

have larger amounts of memory instructions.

To reduce hardware costs, the design of PWS also supports keeping the total number of SIMDs

constant and designating a subset of them to be SpSIMDs. For example, if there are a total of

16 SIMDs, 4 SIMDs can be designated for the original wavefronts while the remaining 12 can

be provisioned as SpSIMDs to allow for S = 3. Figure 10c shows the WCET reduction for GPU

processors with a varying total number of available SIMDs. The result demonstrates that PWS can

also be a useful strategy for WCET reduction even with tight hardware budgets.

Figure 10e shows the analytical WCET for each of the Rodinia benchmarks. These benchmarks

have relatively little branch divergence so there is limited reduction in the WCET.

Average-case performance under PWS. The WCET is the primary requirement for being able

to deploy safety-critical applications on GPUs. However, it is also important to offer as much

performance as possible while still providing WCET guarantees to allow the application to deliver

its required quality of service. Therefore, we also evaluate the performance improvement offered

by PWS compared to existing architectures.

We use the Rodinia benchmark suite [19] to evaluate the average-case performance of PWS

across a variety of applications. Figure 11 shows the average-case performance improvement

demonstrated by PWS when S = 1 compared to no splitting as the baseline. The total number of

SIMDs for both splitting and no splitting cases is held constant. The benchmarks are sorted in order

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

Predictable Wavefront Splitting 1:23

-20%

0%

20%

40%

60%

80%

0% 25% 50% 75% 100%

Percentage of divergent instruc ons

S=1 S=3

R
e

d
u

c
o

n
 i

n
 A

n
a

ly
ca

l
W

C
E

T

(a) Reduction in WCET given the
proportion of divergent instructions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0% 25% 50% 75% 100%

R
e

d
u

c
o

n
 i

n
 A

n
a

ly
ca

l
W

C
E

T
Percentage of memory instruc ons

S=1 S=3

(b) Reduction in WCET given the
proportion of memory instructions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

16 32 64

R
e

d
u

c
o

n
 i

n
 A

n
a

ly
ca

l
W

C
E

T

Total number of SIMDs

S=1 S=3

(c) Reduction in WCET given
the total number of SIMDs.

DWSPWS

0%0%0

12%56%1

-28%68%3

-112%73%7

(d) WCET reduction
for PWS and DWS.

0.00
0.20

0.40
0.60

0.80
1.00
1.20

he
ar
tw
al
l

ho
ts
po
t

dw
t2
d

ga
us
si
an nn

sr
ad

ba
ck
pr
op bf

s
cf
d

km
ea
ns

b+
tr
ee

hy
br
id
so
rt nw lu

d

pa
r
cl
e
lte
r

S=1 S=3 S=7

(e) Analytical WCET for each Rodinia benchmark, normalized to the analytical
WCET for S = 0.

Fig. 10. Plots of each result running PWS on synthetic and Rodinia benchmarks, compared to no splitting as
the baseline.

of smallest to largest speedup. The first segment of benchmarks, coloured orange, demonstrate

a minor performance loss. The second segment of benchmarks, coloured green, demonstrate a

performance gain. Finally, the blue columns represent the geometric and arithmetic mean of

all speedups, which is a performance improvement of approximately 11% and 18%, respectively.

Notably, the bfs benchmark demonstrates a performance improvement of 3x. The structure of the

benchmark includes a loop which contains conditional logic based on the value of the data for

each work-item, a pattern which often leads to branch divergence. Since the divergent code block

is found within the main loop of the kernel, wavefront splitting offers a significant increase in

performance. Overall, the average-case performance improvement by 11% shows that PWS can

also enhance GPU performance on top of reducing the WCET.

Reusing SpSIMD units. Recall that PWS may re-provision some SpSIMD units if the number of

split points required by the programmer is less than S. Reusing the SpSIMD units does not have an

impact on the kernel WCET under PWS; however, it may offer some performance benefit. In our

experiments, we assess the impact of reusing SpSIMD units on the performance of PWS. Figure 12

compares the average-case performance under PWS with and without this described SpSIMD reuse.

We use a GPU configuration where each CU has four SIMD units with three SpSIMDs allocated

per SIMD unit. We evaluate the configuration using our synthetic benchmark with 100% divergent

instructions and 0% memory instructions with zero, one, two, and three annotated split points. Note

that the fewer annotated split points there are, the better the observed performance improvement.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

1:24 Klashtorny et al.

0.6
3

0.8
6

0.8
7

0.9
6

0.9
8

0.9
8

0.9
8

1.0
0

1.0
7

1.1
7

1.1
9

1.1
9

1.4
0

1.4
6

2.9
7

1.1
1

1.1
8

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

sr
ad

hear
tw

al
l

ga
uss

ia
n

dw
t2

d

bac
kp

ro
p

nw nn

km
ean

s
cf

d

b+tr
ee

lu
d

hots
pot

hyb
rid

so
rt

par
cl

e
lte

r
bfs

ge
o. m

ean

ar
ith

. m
ean

S
p

e
e

d
u

p

Fig. 11. Average-case PWS speedup for each Rodinia benchmark compared to no splitting as the baseline.

This is because there are a larger number of re-provisioned SpSIMD units. The data shows that

reusing the idle SpSIMDs results in an up to 31% performance improvement under PWS compared

to leaving them idle.

0

500

1000

0 1 2 3

M
il

li
o

n
s

o
f

C
y
cl

e
s

Number of Annotated Split Points in Kernel

No SpSIMD Reuse

SpSIMD Reuse

Fig. 12. Average-case execution time under PWS with and without SpSIMD reuse, where S=3.

8 CONCLUSION
In this work, we present PWS, a technique that allows for predictable wavefront splitting to address

the impact of GPU branch divergence for safety-critical systems. Timing predictability requires that

the WCET can be modeled to provide an upper bound on the kernel execution time. PWS achieves

timing predictability in three key ways. First, it uses explicit instructions in the form of split and

merge instructions which inform the static analysis techniques where split points will occur in the

kernel. Next, it guarantees that SWFs execute in parallel with each other, which contributes to

obtaining a low WCET. Finally, it adds a compiler pass to eliminate execution paths in the CFG

that will not be taken by SWFs, allowing it to reduce the upper bound on the kernel execution

time. Our analysis gives programmers a way to compute the WCET, and we show how PWS can

reduce this WCET compared to prior works. Our results show that PWS can also improve GPU

performance while also providing programmers a mechanism to compute and reduce the WCET of

a kernel, making PWS a suitable strategy for safety-critical systems.

REFERENCES
[1] Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers, and Margaret Martonosi. 2018. General-Purpose Graphics

Processor Architecture. Morgan & Claypool. 21–26 pages.

[2] Advanced Micro Devices. 2016. Graphics Core Next Architecture Reference Guide.

[3] Advanced Micro Devices. 2019. Introducing RDNA Architecture.

[4] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson Smith. 2017. GPU Scheduling

on the NVIDIA TX2: Hidden Details Revealed. In 2017 IEEE Real-Time Systems Symposium (RTSS). 104–115. https:

//doi.org/10.1109/RTSS.2017.00017

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1109/RTSS.2017.00017

Predictable Wavefront Splitting 1:25

[5] Pete Bannon, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes. 2019. Computer and Redundancy Solution

for the Full Self-Driving Computer. In 2019 IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA, August 18-20,

2019. IEEE, 1–22. https://doi.org/10.1109/HOTCHIPS.2019.8875645

[6] Adam Betts and Alastair Donaldson. 2013. Estimating the WCET of GPU-Accelerated Applications Using Hybrid

Analysis. In 2013 25th Euromicro Conference on Real-Time Systems. 193–202. https://doi.org/10.1109/ECRTS.2013.29

[7] Srikant Bharadwaj, Shomit Das, Yasuko Eckert, Mark Oskin, and Tushar Krishna. 2021. DUB: Dynamic Underclocking

and Bypassing in Nocs for Heterogeneous GPUWorkloads. In Proceedings of the 15th IEEE/ACM International Symposium

on Networks-on-Chip (Virtual Event) (NOCS ’21). Association for Computing Machinery, New York, NY, USA, 49–54.

https://doi.org/10.1145/3479876.3481590

[8] Benjamin Brosgol. 2011. DO-178C: The Next Avionics Safety Standard. In Proceedings of the 2011 ACM Annual

International Conference on Special Interest Group on the Ada Programming Language (Denver, Colorado, USA) (SIGAda

’11). Association for Computing Machinery, New York, NY, USA, 5–6. https://doi.org/10.1145/2070337.2070341

[9] Nicolas Brunie, Caroline Collange, and Gregory Diamos. 2012. Simultaneous branch and warp interweaving for

sustained GPU performance. In 2012 39th Annual International Symposium on Computer Architecture (ISCA). 49–60.

https://doi.org/10.1109/ISCA.2012.6237005

[10] Sana Damani, Mark Stephenson, Ram Rangan, Daniel Johnson, Rishkul Kulkarni, and Stephen W. Keckler. 2022. GPU

Subwarp Interleaving. In Proceedings of the International Symposium on High-Performance Computer Architecture.

[11] Wilson W.L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow. In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

407–420. https://doi.org/10.1109/MICRO.2007.30

[12] Yijie Huangfu andWei Zhang. 2017. StaticWCET Analysis of GPUs with PredictableWarp Scheduling. In 2017 IEEE 20th

International Symposium on Real-Time Distributed Computing (ISORC). 101–108. https://doi.org/10.1109/ISORC.2017.24

[13] Jason Lowe-Power et al. 2020. The gem5 Simulator: Version 20.0+. CoRR abs/2007.03152 (2020). arXiv:2007.03152

https://arxiv.org/abs/2007.03152

[14] Kuen-Long Lu and Yung-Yuan Chen. 2019. ISO 26262 ASIL-Oriented Hardware Design Framework for Safety-

Critical Automotive Systems. In 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE). 1–6.

https://doi.org/10.1109/ICCVE45908.2019.8965235

[15] Jiayuan Meng, David Tarjan, and Kevin Skadron. 2010. Dynamic Warp Subdivision for Integrated Branch and Memory

Divergence Tolerance. In Proceedings of the 37th Annual International Symposium on Computer Architecture (Saint-Malo,

France) (ISCA ’10). Association for Computing Machinery, New York, NY, USA, 235–246. https://doi.org/10.1145/

1815961.1815992

[16] Nathan Otterness and James H. Anderson. 2021. Exploring AMD GPU Scheduling Details by Experimenting With

“Worst Practices”. In 29th International Conference on Real-Time Networks and Systems (NANTES, France) (RTNS’2021).

Association for Computing Machinery, New York, NY, USA, 24–34. https://doi.org/10.1145/3453417.3453432

[17] Michael Platzer and Peter Puschner. 2021. Vicuna: A Timing-Predictable RISC-V Vector Coprocessor for Scalable Parallel

Computation. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 196), Björn B. Brandenburg (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 1:1–1:18. https://doi.org/10.4230/LIPIcs.ECRTS.2021.1

[18] Minsoo Rhu and Mattan Erez. 2013. The dual-path execution model for efficient GPU control flow. In 2013 IEEE 19th

International Symposium on High Performance Computer Architecture (HPCA). 591–602. https://doi.org/10.1109/HPCA.

2013.6522352

[19] Corbin Robeck and Aryan Salmanpour. 2016. ROCm Developer Tools: HIP Examples. https://github.com/ROCm-

Developer-Tools/HIP-Examples.

[20] Roy Spliet and Robert D. Mullins. 2022. Sim-D: A SIMD Accelerator for Hard Real-Time Systems. IEEE Trans. Comput.

71, 4 (2022), 851–865. https://doi.org/10.1109/TC.2021.3064290

[21] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H. Anderson, and F. Donelson Smith. 2018. Avoiding

Pitfalls when Using NVIDIA GPUs for Real-Time Tasks in Autonomous Systems. In 30th Euromicro Conference on

Real-Time Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain (LIPIcs, Vol. 106), Sebastian Altmeyer (Ed.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:21. https://doi.org/10.4230/LIPIcs.ECRTS.2018.20

[22] Sharad Malik Yau-Tsun Steven Li. 1995. Performance Analysis of Embedded Software Using Implicit Path Enumeration.

In 32nd Design Automation Conference. 456–461. https://doi.org/10.1109/DAC.1995.249991

[23] Wei Zhang, Quan Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jingwen Leng, andMinyi Guo. 2022. Astraea: Towards

QoS-Aware and Resource-Efficient Multi-Stage GPU Services. In Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22).

Association for Computing Machinery, New York, NY, USA, 570–582. https://doi.org/10.1145/3503222.3507721

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3609102

A. Klashtorny, Z. Wu, A. M. Kaushik, and H. Patel, “Predictable GPU Wavefront Splitting for Safety-Critical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 5s, Sep. 2023, doi: 10.1145/3609102.

https://doi.org/10.1109/HOTCHIPS.2019.8875645
https://doi.org/10.1109/ECRTS.2013.29
https://doi.org/10.1145/3479876.3481590
https://doi.org/10.1145/2070337.2070341
https://doi.org/10.1109/ISCA.2012.6237005
https://doi.org/10.1109/MICRO.2007.30
https://doi.org/10.1109/ISORC.2017.24
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/ICCVE45908.2019.8965235
https://doi.org/10.1145/1815961.1815992
https://doi.org/10.1145/1815961.1815992
https://doi.org/10.1145/3453417.3453432
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://doi.org/10.1109/HPCA.2013.6522352
https://doi.org/10.1109/HPCA.2013.6522352
https://github.com/ROCm-Developer-Tools/HIP-Examples
https://github.com/ROCm-Developer-Tools/HIP-Examples
https://doi.org/10.1109/TC.2021.3064290
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20
https://doi.org/10.1109/DAC.1995.249991
https://doi.org/10.1145/3503222.3507721

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 PWS Design
	4.1 Architectural modifications for PWS
	4.2 Compiler flow

	5 Worst-case Execution Time Analysis
	5.1 Ekernel with DWS

	6 Related Work
	7 Results
	8 Conclusion
	References

